Saturday, 27 April 2013

CLASS X SOLUTION



 MATHS UNIT TEST


  1. Which of the following rational number have terminating decimal?
 a. 16/225              b. 5/18             c. 2/21             d. 7/250
Ans:  7/250.  Since 7/250 = 7/53x2
3
  1. The H.C.F and L.C.M of two rational nos. are equal then the nos. must be
 a. prime                b. co-prime      c. composite    d. equal
Ans:  Equal

  1. Given that H.C.F (306,657) = 9. Find the L.C.M.
Ans:  Since we know that H.C.F x L.C.M = a x b
          9 x L.C.M = 306 x 657
          L.C.M = (306 x 657)/9
                      = 22338.

  1. Express 3825 as the product of its prime factors.
Ans:  3825 = 5 x 5 x 3 x 3 x 17
                  = 52 x 32 x 17

  1. Find a quadratic polynomial if sum and product of its zeros are -1/4 and 1/4.
Ans:  Equation for quadratic polynomial is
          X2- (sum) x + product = 0
          X2- (-1/4) x + (1/4) = 0
          X2 + 1/4x + ¼ = 0

  1. Use Euclid’s division algorithm to find the H.C.F of 210 and 55.
Ans:  H.C.F of 210 and 55
          210 = 55 x 3 + 45
          55 = 45 x 1 + 10
          45 = 10 x 4 + 5
          10 = 5 x 2 + 0
          So, H.C.F = 5.

  1. Prove that √3 is irrational number.
Ans:  Let us consider √3 is rational = p/q = where p and q are co-primes.
         Squaring: (√3)2 = p2/q2
                                  3 = p2/q2
                             q2 = p2/3                                 (1)
                       = 3 divides p2
                       = 3 divides p                                 (2)
         Let us suppose   p=3p’
Inserting value of p in (1)
         3q2 = (3p’)
           q2 = 3p’
           p2 = q2/3
= 3 divides p2
= 3 divides p                                                      (3)
From (2) and (3)
3 divides p and q
= H.C.F of p and q is 3
But p and q are co-primes
= our supposition is wrong
= √3 is irrational.

  1. Show that any positive odd integer is of the form 4q+1 and 4q+3 where q is some integer.
Ans:  Let a be any positive integer, b=4
         Acc. To Euclid’s division algorithm
         A=bq+r where 0_< r < b
         R=0,1,2,3
         When r = 0
         A=bq+0
         When r = 1
         A=bq+1
         When r = 2
         A=bq+2
         When r = 3
         A=bq+3
So, the positive odd integer among this is 4q+1 and 4q+3.

  1. Divide the polynomial p(x) = x4-3x2+4x+5 by the polynomial g(x) = x2+1-x. Find the ques. and rem.
Ans:  p(x) = x4-3x2+4x+5
         g(x) = x2+1-x = x2-x+1


                                                                                                       

Rem = 8, quest = x2+x-3.

  1. Obtain all other zeros of 3x4+6x3-2x2-10x-5 if two of it’s zeros are √5/3 and -√5/3.
Ans:  p(x) = 3x4+6x3-2x2-10x-5
         Given zero = (x-√5/3) (x+√5/3)
               Product = (x2-5/3)

       
  
                       

P(x) = (x2-5/3)(3x2+6x+3)
Now: 3x2+6x+3
          3x2+3x+3x+3
          3x(x+1)+3(x+1)
          (3x+3)(x+1)
Now x = -1, -1                                                                                                                                                                                                                                                                                                                              YOU ARE MOST WELCOME TO ASK ANY DOUBT   

1 comment: